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Abstract 
 

 A new 3-D transport calculation method taking into account the heterogeneity of fuel 
assemblies has been developed by combining the characteristics method and the nodal 
transport method. 
 In the axial direction the nodal transport method is applied, and the characteristics 
method is applied to take into account the radial heterogeneity of fuel assemblies. 
 The numerical calculations have been performed to verify 2-D radial calculations of 
FBR assemblies and partial core calculations. Results are compared with the reference 
Monte-Carlo calculations. A good agreement has been achieved. It is shown that the 
present method has an advantage in calculating reaction rates in a small region. 
 

1. Introduction 
 
 The core calculations of fast reactors are usually performed in terms of multi-group 
diffusion and transport theory with assembly homogenized cross sections and diffusion 
coefficient. The diffusion calculations are recently carried out using the nodal diffusion 
theory. In the theory the assembly homogenized cross sections and the flux 



discontinuity factors are utilized. In Japan, however, the flux discontinuity factor has not 
been utilized in fast reactor analysis. The effective cross sections that preserve the 
assembly averaged reaction rate in a color set including different types of assemblies 
have been used in the diffusion calculations without using the flux discontinuity factor. 
 To consider the transport correction, which cannot be neglected in fast reactor analysis, 
in 3-D geometry, the 3-D transport codes such as TRITAC(1)(2) and NSHEX(3)(4) were 
developed in Japan. 
 TRITAC is the 3-D XYZ Sn based on the finite difference method, and the diffusion 
synthetic acceleration technique is utilized to shorten computing time. The code has 
been successfully applied to the fast critical assemblies ZPPR(5) to analyze the critical 
experiment plan JUPITER, and to the prototype fast reactor MONJU for detailed 
analysis. 
 NSHEX is the 3-D Hex-Z nodal transport code with the explicit expression of neutron 
angular distribution by the Sn quadrature. 
 These codes can estimate the whole core transport correction. However, the local 
transport correction is difficult to estimate because each assembly is homogenized, and 
there is no technique to utilize the flux discontinuity factor within the framework of 
transport theory. 
 Furthermore, in MONJU or JOYO, there are special assemblies loaded at some in the 
core to measure the reaction rate of several elements. These assemblies are composed of 
fuel pins and special capsules which contain dosimeter foils. 
 To analyze the reaction rates in such a small region it is necessary to use 
multi-dimensional transport codes which can treat the heterogeneity of assemblies. 
 The purpose of this report is to develop a 3-D transport method treating the 
heterogeneity of assemblies. In Chap.2 we will develop a new method by combining the 
characteristics method(6)(7) and the nodal transport method. Numerical results for 2-D 
infinite assembly calculations and 2-D color set calculations for the present method are 
compared with the reference Monte-Carlo method in Chap.3. 
  

2. 3-D Transport Theory Method  
 
 Let us consider the following multi-group transport equation in 3-D geometry. 
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where the source term is expressed by 
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 The hexagonal-Z core geometry is divided into nodes. Each hex-Z node corresponding 
finite height of an assembly includes heterogeneous pin arrays. By integrating Eq.(1) 
about Z over Zk<Z<Zk+1 ,one obtains 
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 Equation (3) is solved by the characteristics method. Using the distances taken along a 
neutron flight, Eq.(4) can be written as 
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 The outgoing neutron from a region is given by  
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The pass length in a region is called as segment (Fig.1). The segment averaged 
angular flux is given by  
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  The region-averaged angular flux is calculated by 
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and the averaged flux is calculated by  

                                                                                    ∑ Φ=Φ
k

g
ikk

g
i ,ω                                                                                             ( ( ( ( 11111111))))    

 where ω is the weight for direction k. 
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 A computer code BACH(Beneficial and Advanced transport Characteristics method 
for Hexagonal cell) has been developed based on the above method. In the code the 
combination of heterogeneous hexagonal assemblies can be handled as shown in Fig.2.  
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3. Numerical Calculations and Discussions 

 
 The BACH code has been applied to two problems, infinite assembly calculations and 
color set (mini-core) calculations. The calculations were carried out in 70 groups using 
the cross section set from the JENDL-3.2 library(8). 
 

 
3.1 Assembly Calculation 

 
 The calculation model is show in Fig.3. The central 169 pins have Pu fuel of 
enrichment of 20.03wt%, and surrounded by a wrapper tube of 0.3cm thickness. The 
eigenvalue ∞k is calculated by varying the pass line distance and the polar angle 
division. The division number of azimuthal angle was fixed to 360. 

Fig Fig Fig Fig 3333    CalculationCalculationCalculationCalculation model  model  model  model     

 The ∞k results are shown in Table 1 
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Table Table Table Table 1111  Results of   Results of   Results of   Results of ∞k for various calculations with different pass line distance 
and polar angle division number 

 
 The reference Monte-Carlo result calculated by GMVP is 1.34926±0.0113%. The 
BACH result with pass line distance of 0.01cm and polar angle division number of 6    
well agrees with the reference result, which shows the validity of BACH. Using the pass 
line distance of 0.5cm, the difference from the reference is only 0.05 % kk /∆ , which 
can be neglected in design calculations. 
 The neutron spectrum calculated by BACH was compared with the reference result, 
and good agreement was obtained for individual pins. The within-assembly reaction rate 
distributions were also compared with the reference ones. Figure 4 compares the Pu-239 
fission and capture rate distributions. The GMVP results have relatively large standard 
deviations near the center of the assembly, and show a dip at the center. The present 
BACH does not produce such a problem, and leads to smooth results. 

Fig 4 Normalized Reaction rate distributions 
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3.2 Color Set Calculation 

 
 Next we have applied BACH to a color set problem shown in Fig.5. The central 

assembly has a special pin at the center. The effk calculated by GMVP and BACH are 

1.36970±0.014% and 1.36953 respectively, and a good agreement is obtained. 
 The neutron spectra calculated are compared in Fig.6. It is noted that the GMVP could 
not calculate the low-energy spectrum at the center of the central assembly because of 
the absence of neutrons slowing down in the low energy range at the position. 
 BACH produced a reasonable result. This is a great advantage for the present method 
because one can accurately estimate reaction rates of small dosimeter foils. 

Fig Fig Fig Fig 5555 Mini Mini Mini Mini core for color set  core for color set  core for color set  core for color set problemproblemproblemproblem        

Fig Fig Fig Fig 6666 Neutron spectra at the center of central assembly Neutron spectra at the center of central assembly Neutron spectra at the center of central assembly Neutron spectra at the center of central assembly    
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4. Conclusion 
 
 The 3-D heterogeneous core calculation method has been introduced based on the 
characteristics method and the nodal transport method. 
 The heterogeneity of assemblies can be accurately taken into account by the 
characteristics method. Based on the method a computer code BACH has been made. 
The code was applied to the assembly calculations and the color set calculations. In both 
applications, the BACH results are in good agreement with the reference Monte-Carlo 
method. Furthermore, for the detailed information such as reaction rates of small 
samples, the BACH results were superior to the Monte-Carlo method. 
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